skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ntampaka, Michelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a novel approach to reconstruct gas and dark matter projected density maps of galaxy clusters using score-based generative modeling. Our diffusion model takes in mock SZ and X-ray images as conditional inputs, and generates realizations of corresponding gas and dark matter maps by sampling from a learned data posterior. We train and validate the performance of our model by using mock data from a hydrodynamical cosmological simulation. The model accurately reconstructs both the mean and spread of the radial density profiles in the spatial domain, indicating that the model is able to distinguish between clusters of different mass sizes. In the spectral domain, the model achieves close-to-unity values for the bias and cross-correlation coefficients, indicating that the model can accurately probe cluster structures on both large and small scales. Our experiments demonstrate the ability of score models to learn a strong, nonlinear, and unbiased mapping between input observables and fundamental density distributions of galaxy clusters. These diffusion models can be further fine-tuned and generalized to not only take in additional observables as inputs, but also real observations and predict unknown density distributions of galaxy clusters. 
    more » « less
    Free, publicly-accessible full text available July 14, 2026
  2. ABSTRACT Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with MachinE Learning Simulations project, containing thousands of $$(25\, h^{-1}\, {\rm Mpc})^3$$ volume realizations with varying cosmology, initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods. We show that baryonic physics affects matter clustering on scales $$k \gtrsim 0.4\, h\, \mathrm{Mpc}^{-1}$$ and the magnitude of this effect is dependent on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations, while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN feedback. We find a broad correlation between mean baryon fraction of massive haloes (M200c > 1013.5 M⊙) and suppression of matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of haloes across the full mass range 1010 ≤ Mhalo/M⊙<1015 can predict the effect of galaxy formation on the matter power spectrum on scales k = 1.0–20.0 $$h\, \mathrm{Mpc}^{-1}$$. 
    more » « less
  3. Abstract The Local Volume Complete Cluster Survey is an ongoing program to observe nearly a hundred low-redshift X-ray-luminous galaxy clusters (redshifts 0.03 <z< 0.12 and X-ray luminosities in the 0.1–2.4 keV bandLX500c> 1044erg s−1) with the Dark Energy Camera, capturing data in theu,g,r,i,zbands with a 5σpoint source depth of approximately 25th–26th AB magnitudes. Here, we map the aperture masses in 58 galaxy cluster fields using weak gravitational lensing. These clusters span a variety of dynamical states, from nearly relaxed to merging systems, and approximately half of them have not been subject to detailed weak lensing analysis before. In each cluster field, we analyze the alignment between the 2D mass distribution described by the aperture mass map, the 2D red-sequence (RS) galaxy distribution, and the brightest cluster galaxy (BCG). We find that the orientations of the BCG and the RS distribution are strongly aligned throughout the interiors of the clusters: the median misalignment angle is 19° within 2 Mpc. We also observe the alignment between the orientations of the RS distribution and the overall cluster mass distribution (by a median difference of 32° within 1 Mpc), although this is constrained by galaxy shape noise and the limitations of our cluster sample size. These types of alignment suggest long-term dynamical evolution within the clusters over cosmic timescales. 
    more » « less
  4. Abstract We present the Local Volume Complete Cluster Survey (LoVoCCS; we pronounce it as “low-vox” or “law-vox,” with stress on the second syllable), an NSF’s National Optical-Infrared Astronomy Research Laboratory survey program that uses the Dark Energy Camera to map the dark matter distribution and galaxy population in 107 nearby (0.03 <z< 0.12) X-ray luminous ([0.1–2.4 keV]LX500> 1044erg s−1) galaxy clusters that are not obscured by the Milky Way. The survey will reach Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1–2 depth (for galaxiesr= 24.5,i= 24.0, signal-to-noise ratio (S/N) > 20;u= 24.7,g= 25.3,z= 23.8, S/N > 10) and conclude in ∼2023 (coincident with the beginning of LSST science operations), and will serve as a zeroth-year template for LSST transient studies. We process the data using the LSST Science Pipelines that include state-of-the-art algorithms and analyze the results using our own pipelines, and therefore the catalogs and analysis tools will be compatible with the LSST. We demonstrate the use and performance of our pipeline using three X-ray luminous and observation-time complete LoVoCCS clusters: A3911, A3921, and A85. A3911 and A3921 have not been well studied previously by weak lensing, and we obtain similar lensing analysis results for A85 to previous studies. (We mainly use A3911 to show our pipeline and give more examples in the Appendix.) 
    more » « less
  5. null (Ed.)